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SMALL EIGENVALUES OF SURFACES OF FINITE TYPE

WERNER BALLMANN, HENRIK MATTHIESEN, AND SUGATA MONDAL

Abstract. Extending our previous work on eigenvalues of closed sur-
faces and work of Otal and Rosas, we show that a complete Riemannian
surface S of finite type and Euler characteristic χ(S) < 0 has at most
−χ(S) small eigenvalues.

1. Introduction

For Riemannian metrics on the closed surface S = Sg of genus g ≥ 2, the
eigenvalue λ2g−2 = λ−χ(S) plays a specific role. On the one hand, Buser gave
examples of hyperbolic metrics on S such that the first 2g − 2 eigenvalues

0 = λ0 < λ1 ≤ · · · ≤ λ2g−3

are arbitrarily small [7, Satz 1]. On the other hand, Schoen, Wolpert, and
Yau proved that there is a constant c = c(g) > 0 such that λ2g−2 > c
for any Riemannian metric on S with curvature K ≤ −1 [17]. Buser then
showed that, for hyperbolic metrics, the constant c can be chosen to be
independent of the genus [8, Theorem 8.1.4]. This development culminated

in the work of Otal and Rosas, who showed that λ2g−2 > λ0(S̃) for any

analytic Riemannian metric on S with curvature K ≤ −1, where λ0(S̃)
denotes the bottom of the spectrum of the universal covering surface of S,
endowed with the lifted Riemannian metric [15, Théorème 1].

Recall that the bottom of the spectrum of the hyperbolic plane is 1/4 and

that we have λ0(S̃) ≥ 1/4 if K ≤ −1; see also (1.1) below.
Dodziuk, Pignataro, Randol, and Sullivan extended the work of Schoen,

Yau, and Wolpert to the non-compact surfaces Sg,p of genus g with p > 0
punctures (where 2g + p > 2). They showed that there is a constant c =
c(2g+ p) such that complete hyperbolic metrics on Sg,p –of finite or infinite
area– have at most 2g+ p− 2 eigenvalues λ, counted with multiplicity, with
λ ≤ c [11, Corollary 1.3]. In [15, Théorème 2], Otal and Rosas improve this
for complete hyperbolic metrics of finite area to c = 1/4.

At the end of their article, Otal and Rosas discuss the question whether
their results also hold for smooth Riemannian metrics. In our previous
article [4], we showed this for closed surfaces and sharpened their lower

bound λ0(S̃). In the present article, we generalize their results to surfaces
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of finite type, more precisely, to surfaces S with compact boundary (possibly
empty) with −∞ < χ(S) < 0 and complete Riemannian metrics on them
(possibly of infinite area), again with a sharper lower bound.

Recall that a surface S with compact boundary is of finite type if and
only if it is diffeomorphic to a closed surface with p ≥ 0 points and q ≥ 0
open discs removed. Then S has p ends, represented by the punctures, and
q boundary circles, the boundaries of the deleted open discs. Note that we
are only concerned with the diffeomorphism type of S. Thus a puncture has
the same effect as the removal of a closed disc.

A basis of the neighborhoods of an end of S consists of punctured discs
around the corresponding deleted point. We call these punctured discs fun-
nels and visualize the surface as a steamboat with the funnels pointing up-
wards and the rest of the surface below them. As already emphasized above,
we do not distinguish between different conformal types. For example, in
our terminology, a hyperbolic cusp is a funnel.

We assume that S is endowed with a Riemannian metric which is complete
with respect to the associated distance function. The area of the metric may
be finite or infinite. We view the Laplacian ∆ of S as an unbounded operator
on the space L2(S) of square integrable functions on S with domain the space

of smooth functions on S with compact support in the interior S̊ of S. Our
concern is the spectrum of the Friedrichs extension of ∆, which we call the
spectrum of S. If the boundary of S is empty, a case which we include in
our discussion, this is the usual spectrum of S. Otherwise it is the Dirichlet
spectrum of S.

For any Riemannian manifold M , with or without boundary, denote by
λ0(M) the bottom of the spectrum of the Laplacian on M ; that is,

(1.1) λ0(M) = inf R(ϕ),

where ϕ runs over all non-zero smooth functions onM with compact support
in the interior of M and R(ϕ) denotes the Rayleigh quotient of ϕ,

(1.2) R(ϕ) =

∫

M
|∇ϕ|2

∫

M
ϕ2

.

As we mentioned above, the bottom of the spectrum of the hyperbolic plane
is 1/4. The bottom of the spectrum of the Euclidean plane is 0.

To state the main result of the present article, we need to introduce one
more notion. Let S be a surface of finite type, with or without boundary,
endowed with a complete Riemannian metric. Set

(1.3) Λ(S) = inf
Ω
λ0(Ω),

where the infimum is taken over all domains Ω in S which are diffeomorphic
to an open disc, annulus, or cross cap. Note that any such domain can be
lifted to S̃ or a cyclic quotient of S̃, and hence we have

(1.4) Λ(S) ≥ λ0(S̃)

by a result of Brooks [6, Theorem 1] (see Remark 1.7.2 below). In [4] we
showed that, on a closed surface S with χ(S) < 0, a Riemannian metric has
at most −χ(S) eigenvalues λ which are small in the sense of λ ≤ Λ(S). The
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main result of this article is an extension of the latter result to surfaces of
finite type.

Theorem 1.5. A complete Riemannian metric on a surface S with compact
boundary (possibly empty) and with −∞ < χ(S) < 0 has at most −χ(S)
eigenvalues λ, counted with multiplicity, with λ ≤ Λ(S).

With p, q as further up, the case p = q = 0 corresponds to closed surfaces,
treated in [4]. The case p > 0, q = 0 (with orientable S) extends [11, Corol-
lary 1.3] of Dodziuk, Pignataro, Randol, and Sullivan and [15, Théorème
2] of Otal and Rosas to arbitrary complete Riemannian metrics on such
surfaces. The case p = 0, q > 0 corresponds to the Dirichlet spectrum of
compact surfaces with non-empty boundary. Theorem 1.5 implies also the
following extension of the above result of Dodziuk, Pignataro, Randol, and
Sullivan.

Corollary 1.6. Let S be a surface of finite type with compact boundary
(possibly empty), endowed with a complete hyperbolic metric of infinite area
such that the boundary of S is weakly convex, that is, such that the geodesic
curvature of the boundary with respect to the inner normal is non-negative.
Then S has at most −χ(S) eigenvalues, counted with multiplicity.

As for the proof of Corollary 1.6, note that the weak convexity of the
boundary implies that the shortest curves in the free homotopy classes of
the boundary circles are closed hyperbolic geodesics in S. Cutting away the
pieces between these and the corresponding boundary circles, we arrive at
a hyperbolic surface S′ with closed hyperbolic geodesics as boundary. Then
we can decompose S′ in the standard way into pairs of pants, some of them
possibly with hyperbolic cusps, and expanding funnels of the kind {(x, y) |
x ≥ 0, y ∈ R/LZ} with hyperbolic metric dx2+cosh(x)2dy2. Since the area
of S is infinite, at least one expanding funnel occurs. Hence Theorem 4.8 of
[13] applies and shows that S does not have eigenvalues ≥ 1/4. (Note that
Theorem 4.8 also applies to surfaces; see the last sentence in Section 4 of
[13].) On the other hand, we have Λ(S) ≥ λ0(S̃) by (1.4) and λ0(S̃) = 1/4.
Now Corollary 1.6 follows from Theorem 1.5.

The situation for complete hyperbolic metrics of finite area is much more
complicated; see e.g. Section 2 and Conjecture 1 in [16].

Remarks 1.7. 1) The bound −χ(S) in Theorem 1.5 and Corollary 1.6 is
optimal. Indeed, the construction of Buser in [7] applies to surfaces S with
compact boundary (possibly empty) and −∞ < χ(S) < 0 and shows that,
for any ε > 0, there is a complete hyperbolic metric on any such S with
closed hyperbolic geodesics as boundary circles such that S has (at least)
−χ(S) eigenvalues λ, counted with multiplicity, with λ < ε. Furthermore,
if S is not compact, the metric can be chosen to have finite or infinite area.

2) Under a Riemannian covering of complete and connected Riemannian
manifolds, the bottom of the spectrum of the covered manifold is at most
the bottom of the spectrum of the covering manifold; see e. g. [6, p. 101].
Brooks showed that, under a normal Riemannian covering of complete and
connected Riemannian manifolds with an amenable group of covering trans-
formations, the bottom of the spectrum does not change [6, Theorem 1].



4 WERNER BALLMANN, HENRIK MATTHIESEN, AND SUGATA MONDAL

Now the relevant arguments of Brooks in the proof of Theorem 1 in [6] and
of Sullivan in the proof of Theorem 2.1 in [19] remain valid in the more gen-
eral case of complete Riemannian manifolds with boundary, and thus (1.4)
follows.

In general, we do not have Λ(S) > λ0(S̃). For example, if S is a non-

compact complete hyperbolic surface of finite type, then Λ(S) = λ0(S̃) =
1/4. However, the inequality is strict if S is closed and hyperbolic [14]. More
generally, it is strict for any compact Riemannian surface with negative Euler
characteristic, see [5].

3) Besides λ0(S̃) and Λ(S), there is another constant which is of interest
in our context. Recall that the spectrum of S is the disjoint union of its
discrete and essential parts; see Section 3. Denote by λess(S) the bottom
of the essential spectrum of S. Since funnels in surfaces of finite type are
diffeomorphic to open annuli, we have Λ(S) ≤ λess(S).

For non-compact complete hyperbolic surface of finite type, equality holds.
However, any non-compact surface S of finite type with χ(S) < 0 carries
complete Riemannian metrics with Λ(S) < λess(S) and an arbitrary large
number of eigenvalues < λess(S); see Example 3.7.1. In Example 4.1 of [9],
Buser, Colbois, and Dodziuk construct examples of hyperbolic surfaces S of
infinite type which have infinitely many eigenvalues < λess(S).

4) In Examples 3.7.2 and 3.7.3 we show that non-compact surfaces of
finite type with compact boundary carry complete Riemannian metrics with
K ≤ −1, of finite and infinite area, with empty essential spectrum. Such
metrics have infinitely many eigenvalues.

In the proof of our main result, our line of arguments is different from
the classical one of Buser [7], Schoen, Wolpert, Yau [17], and Dodziuk, Pig-
nataro, Randol, Sullivan [11], who rely on decompositions of the surface into
appropriate pieces and monotonicity properties of eigenvalues. We follow the
strategy of Otal and Rosas in [15], which involves a careful examination of
topological properties of the nodal lines and domains of finite linear combi-
nations of eigenfunctions. In our situation of smooth Riemannian metrics,
such nodal lines and domains may not be as regular as in the case of analytic
Riemannian metrics as considered by Otal and Rosas, where eigenfunctions
are analytic, hence also finite linear combinations of them. We investigate
approximate nodal lines and domains instead and, for that reason, have to
face a number of additional problems before we get the main argument of
Otal and Rosas to work. This line of proof requires extending our corre-
sponding arguments in [4] from closed surfaces to surfaces of finite type.
Moreover, in the non-compact case, Otal and Rosas use the rather special
behaviour of nodal lines along hyperbolic cusps. There is no analogous de-
scription of nodal lines in our more general situation.

The main part of the proof of Theorem 1.5 is concerned with topological
properties of approximate nodal domains and their asymptotic behaviour.
The analytical part of the proof of Theorem 1.5 is concentrated in Lemma
4.11. To prepare the proof of Lemma 4.11, we need some prerequisites from
analysis which we present in Section 3. In particular, we extend Cheng’s
Theorem 2.5 in [10] on nodal lines of solutions of Schrödinger equations to
the case of surfaces with smooth boundary; see Theorem 3.10 below.
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Mutatis mutandis, our arguments remain valid for Schrödinger operators
∆ + V , where the potential V is non-negative or, more or less equivalently,
bounded from below. Thus the analog of Theorem 1.5 holds also for such
operators.

2. Prerequisites from topology

In this section, we collect some results about the topology of surfaces.
We assume throughout that the concerned surfaces have empty or piecewise
smooth boundaries.

Proposition 2.1. The interior of a surface S is of finite type if and only if
the fundamental group of S is finitely generated. �

Among the surfaces with boundary (possibly empty) whose interior is of
finite type, we singled out those with compact boundary in the introduction.

For n ≥ 2, denote by Fn the free group in n generators and recall that
the commutator subgroup of F2 is isomorphic to F∞.

Proposition 2.2. For a non-closed surface S, the following are equivalent:
1) The fundamental group of S is cyclic.
2) The fundamental group of S is amenable.
3) The fundamental group of S does not contain F2 as a subgroup.
4) The interior of S is an open disc, annulus, or cross cap. �

We say that a curve in a manifold is a Jordan curve if it is properly
embedded. Note that Jordan curves are closed as subsets of the ambient
manifold. The next assertion is Corollary A.7 in [8] (in the orientable case).

Proposition 2.3. Any null-homotopic Jordan loop in a surface S bounds
an embedded disc in S. �

Corollary 2.4. Let c0 and c1 be Jordan loops in an annulus A which rep-
resent the generator of the fundamental group of A (up to orientation) and
which do not intersect. Then c0 and c1 are the boundary circles of an em-
bedded annulus A′ in A. �

A subsurface C ⊆ S is called incompressible in S if any closed curve in
C, which is homotopic to zero in S, is already homotopic to zero in C.

Lemma 2.5. Let R be a compact and connected surface (with piecewise
smooth boundary ∂R, possibly empty) which is not homeomorphic to the
sphere. Let X be a non-empty incompressible closed subsurface of R with
piecewise smooth boundary ∂X. Assume that ∂X ∩ ∂R is a union of piece-
wise smooth segments and circles (possibly empty) and that ∂X and ∂R are
transversal, where they meet. Then

χ(R) ≤ χ(X).

In the case of equality, the components of R \ X̊ are annuli, cross caps,

and lunes. More precisely, if C is a component of R \ X̊ that intersects the
boundary of R, then C is an annulus attached to a boundary circle of X or
is a lune attached to a part of a boundary circle of X. Otherwise C is an
annulus attached to two boundary circles of X or a cross cap attached to a
boundary circle of X.
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Here a lune is a closed disc D whose boundary is subdivided into two
subarcs. Attaching a lune D to X along ∂X means to glue one of the
subarcs of the boundary of D to an arc in ∂X. Then X is isotopic to X ∪D.

Proof of Lemma 2.5. We may assume X ( R. Now by the assumptions on
the boundaries of R and X, there is a closed collar U about ∂R in R such
that Y = X \ Ů is a deformation retract of X in R. Observe that Y does not
intersect ∂R and that the boundaries of R and Y each are disjoint unions
of circles.

If a component D of R \ Y̊ would be a closed disc, set c = ∂D, a circle
in ∂Y . If c would be homotopic to zero in Y , then there would be a closed
disc D′ in Y with ∂D′ = c. Thus D ∪D′ would be an embedded sphere in
R. This is not possible since R is connected and would have to be equal to
that sphere. Thus c is not homotopic to zero in Y , hence neither in R since
Y is incompressible in R. This is a contradiction, and hence no component
of R \ Y̊ is a disc. Note also that no component of R \ Y̊ is a closed surface
since R is connected and Y is non-empty.

From the Mayer-Vietoris sequence, we obtain χ(R) = χ(Y ) + χ(R \ Y̊ ).

Since no component of R\Y̊ is a disc or a closed surface, we have χ(R\Y̊ ) ≤ 0
and hence

χ(R) ≤ χ(Y ) = χ(X).

If χ(R) = χ(Y ), we have χ(C) = 0 for each component C of R \ Y̊ . Hence
each such C is an annulus or a cross cap. If C does not intersect U , then C
is also a component of R \X.

If C intersects U , it contains the corresponding parts of the boundary of
R. Since R is connected and Y is non-empty, C also contains a part of the
boundary of Y . Hence the boundary of C has more than one component,
and hence C is an annulus. Therefore C contains precisely one boundary
circle of R and intersects only the corresponding part of U .

Let C ′ be a component of R \ X̊ that is contained in C. If C ′ contains
a component of ∂R, then C = C ′ and C ′ is an annulus. If C ′ intersects a
component of ∂R but does not contain it, then C \ C ′ is a subdomain of C
whose boundary components intersects both boundary circles of C. This is
possible only if C \ X̊ consists of attached lunes. �

3. Prerequisites from analysis

We letM be a Riemannian manifold, complete or not complete, connected
or not connected, with or without (piecewise smooth) boundary. We denote
by Ck(M) the space of Ck-functions on M , by Ckc (M) ⊆ Ck(M) the space
of Ck-functions on M with compact support, and by Ckcc(M) ⊆ Ckc (M) the

space of Ck-functions on M with compact support in the interior M̊ of M ,
respectively. In the case where the boundary ∂M of M is empty, we have
Ckcc(M) = Ckc (M). We use the term smooth to indicate C∞.

We let L2(M) be the space of square-integrable functions onM and recall
that C∞

cc (M) is a dense subspace of L2(M). We denote by H1(M) the space
of functions in L2(M) which have a square-integrable gradient ∇f in the
sense of distributions. By the latter we mean that we test ∇f against
smooth one-forms on M with compact support in M̊ . Recall that H1(M)
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is a Hilbert space with respect to the H1-norm and denote by H1
0 (M) the

closure of C∞
cc (M) in H1(M).

Proposition 3.1 (Friedrichs extension). The Laplacian ∆ is self-adjoint as
an unbounded operator on L2(M) with domain the space of ϕ ∈ H1

0 (M) such
that ∆ϕ ∈ L2(M) in the sense of distributions.

Proof. Since H1
0 (M) is dense in L2(M), this follows immediately from the

construction of the Friedrichs extension; compare with [20, Section A.8]. �

We call the spectrum of the Friedrichs extension of ∆ as in Proposition 3.1
the spectrum of M . Note that, in the case where M has no boundary, this
is the usual spectrum of S.

Set Ck0 (M) = {ϕ ∈ Ck(M) | ϕ|∂M = 0}, and let Ckc,0(M) be the space

of Ck-functions in Ck0 (M) with compact support. We use a corresponding
notation for the Hölder spaces Ck,α(M), where 0 < α ≤ 1.

Lemma 3.2. If M is complete as a metric space and the boundary of M is
piecewise smooth (possibly empty), then

C0,1
0 (M) ∩H1(M) ⊆ H1

0 (M).

Proof. Since the boundary of M is piecewise smooth, there is a sequence
of functions χn in C1

c (M) such that 0 ≤ χn ≤ 1 and |∇χn| ≤ 1/n, such
that {χn = 1} contains the support of χn−1 in its interior, and such that
∪{χn = 1} = M . With such a sequence, we can reduce the assertion of

Lemma 3.2 to the case of functions in C0,1
c,0 (M) ∩H1(M).

Given a compact setK ⊆M , there is a sequence of functions χn in C1
c (M)

such that 0 ≤ χn ≤ 1 and |∇χn| ≤ Cn for some constant C = C(K), such
that χn = 1 on the set of x ∈ K with d(x, ∂M) ≥ 2/n, and such that χn = 0
on the set of x ∈ K with d(x, ∂M) ≤ 1/n.

Now let ϕ ∈ C0,1
c,0 (M) ∩ H1(M) and K = suppϕ. Choose a sequence of

functions χn for K as above. Then χnϕ→ ϕ in H1(M) since the area of the
set of x ∈ K with 1/n ≤ d(x, ∂M) ≤ 2/n, which contains K ∩ supp∇χn, is
bounded by A/n for some constant A and since ϕ ≤ 2B/n on this set, where
B is a Lipschitz constant for ϕ. This reduces the assertion of Lemma 3.2
to the case where the support of ϕ is contained in M̊ . In this case, the
assertion follows from smoothing. �

As in the introduction, denote by λ0(M) = inf R(ϕ), where the infimum is
taken over all non-zero ϕ ∈ C∞

cc (M). Since R is continuous on H1
0 (M) \ {0}

and C∞
cc (M) is dense in H1

0 (M), we have

(3.3) λ0(M) = inf{R(ϕ) | ϕ ∈ H1
0 (M) \ {0}}.

Hence λ0(M) is the bottom of the spectrum of the Laplacian. By the defini-
tion of λ0, we also have domain monotonicity,

(3.4) λ0(M) ≥ λ0(M
′)

for any Riemann manifold M ′ containing M .

Lemma 3.5. A non-zero ϕ ∈ H1
0 (M) satisfies R(ϕ) = λ0(M) if and only

if ϕ is an eigenfunction of the Laplacian with eigenvalue λ0(M).
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Proof. By the spectral theorem, we may represent L2(M) as the space L2(X)
of square integrable functions on a measured space X such that ∆ corre-
sponds to multiplication by a measurable function f on X. By the definiton
of λ0(M), we have f ≥ λ0(M) ≥ 0 almost everywhere on X. �

For a self-adjoint operator A on a Hilbert spaceH, the spectrum specA of
A can be decomposed in several ways. By definition, the essential spectrum
specessA ⊆ specA consists of all λ ∈ R such that A−λ id is not a Fredholm
operator. The discrete spectrum specdA is the complement,

specdA = specA \ specessA.

The discrete spectrum consists of eigenvalues of finite multiplicity of A which
are isolated points of specA. The essential spectrum is a closed subset of R.

The following result shows that the essential spectrum of the Laplacian
only depends on the geometry of the underlying manifold at infinity and
that the essential spectrum of the Laplacian is empty if M is compact.

Proposition 3.6. For a complete Riemannian manifold M with compact
boundary (possibly empty), λ ∈ R belongs to the essential spectrum of ∆ if
and only if there is a Weyl sequence for λ, that is, a sequence of functions
ϕn in C∞

cc (M) such that
1) for any compact K ⊆M , suppϕn ∩K = ∅ for all sufficiently large n;
2) lim supn→∞ ‖ϕn‖2 > 0 and limn→∞ ‖∆ϕn − λϕn‖2 = 0.

Proof. See the elementary argument in the proof of Proposition 1 in [3]. �

Examples 3.7. 1) Let S be a non-compact hyperbolic surface without
boundary and with finite area. Replace a simple closed geodesic c in S
by a Euclidean cylinder C = {(x, y) | 0 ≤ x ≤ h, y ∈ R/LZ} of height h and
circumference L = L(c) and smooth out the resulting Riemannian metric
appropriately. Let ϕ = ϕ(x) be a non-vanishing smooth function on R with
support in [−1, 0]. Then the support of ϕk,i = ϕ(x/k − i) is in [(i− 1)k, ik]
and the Rayleigh quotient of ϕk,i is R(ϕ)/k

2. Hence, given ε > 0, we have
R(ϕk,i) < ε if k2 > R(ϕ)/ε. We may also view ϕk,i as a smooth function on
the cylinder C and the surface S if h is sufficiently large. More specifically,
given n, choose h > nk. Then the functions ϕk,1, . . . , ϕk,n have disjoint
supports in C and Rayleigh quotients < ε. Hence S has at least n eigen-
values which are < ε. Since C is a cylinder, we also have Λ(S) < ε. On
the other hand, the essential spectrum of S is still contained in [1/4,∞), by
Proposition 3.6.

2) Let F = {(x, y) | x ≥ 0, y ∈ R/LZ} be a funnel with the expanding
hyperbolic metric dx2+cosh(x)2dy2. Let κ : R → R be a monotonic smooth
function with κ(x) = −1 for x ≤ 1 and κ(x) → −∞ as x → ∞. Suppose
that j : R → R solves j′′ + κj = 0 with initial condition j(0) = 1 and
j′(0) = 0. Then j(x) > cosh x for all x > 1. Furthermore, the funnel F with
Riemannian metric g = dx2 + j(x)2dy2 has curvature K(x, y) = κ(x) ≤ −1
and infinite area. By comparison, the Rayleigh quotient with respect to g
of any smooth function ϕ with compact support in the part {x ≥ x0} of the
funnel is at least −κ(x0)/4.

Let S be a non-compact surface of finite type. Endow S with a hyperbolic
metric which is expanding along its funnels as above. Replace the hyperbolic
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metric on the funnels by the above Riemannian metric g. Then the new
Riemannian metric on S is complete and has curvature K ≤ −1 and infinite
area. By Proposition 3.6 and by what we said above about the Rayleigh
quotients, the essential spectrum of the new Riemannian metric is empty.

3) As a variation of 2), suppose now that j is the unique solution of
j′′ + κj = 0 which satisfies the boundary condition j(0) = 1 and j(∞) = 0.
Then j′(0) < −1 and j(x) < exp(−x) for all x > 0. The funnel F with
Riemannian metric g = dx2 + j(x)2dy2 has curvature K(x, y) = κ(x) and
finite area. Again by comparison, the Rayleigh quotient with respect to g
of any smooth function ϕ with compact support in the part {x ≥ x0} of the
funnel is at least −κ(x0)/4.

Let S be a non-compact surface of finite type, and choose r > 0 such that
coth(r) = −j′(0). It is not hard to see that S minus the parts {x ≥ r} of its
funnels carries hyperbolic metrics which are equal to dx2 + j0(x)

2dy2 along
the parts {x < r} of its funnels, where j0(x) = sinh(r − x)/ sinh(r). Then
j0(x) = j(x) for x < min{1, r}. Hence any such hyperbolic metric, restricted
to S minus the parts {x ≥ min{1, r}} of its funnels, when combined with g
along the funnels, defines a smooth and complete Riemannian metric on S
which has curvature K ≤ −1 and finite area. Again, its essential spectrum
is empty, by Proposition 3.6 and by what we said above about the Rayleigh
quotients.

Although we will not need the following consequence of Proposition 3.6
here, we state it for general reference. For a complete Riemannian manifold
M with compact boundary (possibly empty), we denote by λess(M) the
bottom of the essential spectrum of M .

Corollary 3.8. Let M be a complete Riemannian manifold with compact
boundary (possibly empty) and finitely many ends. Assume that M admits
a neighborhood U of infinity such that, for any connected component C of
U , the image of π1(C) in π1(M) is amenable. Then λess(M) ≥ λ0(M̃ ).

Proof. Let λ ∈ specess∆ and (ϕn) be a Weyl sequence for λ as in Proposi-
tion 3.6. Then, by passing to a subsequence if necessary, we can assume that
all ϕn have support in a connected component C of a neighborhood U of
infinity of M as in the assumption. Then the inclusion C →M and, with it,
all ϕn can be lifted to the subcovering M̄ = Γ\M̃ of the universal covering

space M̃ of M , where Γ denotes the image of π1(C) in π1(M). Therefore

we have λ ≥ λ0(M̄). Now Γ is amenable and hence λ0(M̄ ) = λ0(M̃), by
Theorem 1 of [6] (extended to manifolds with boundary). �

Remark 3.9. For complete Riemannian surfaces S of finite type with com-
pact boundary, we have the refinement λess(S) ≥ Λ(S) ≥ λ0(S̃); see Re-
marks 1.7.2 and 1.7.3 in the introduction.

In the case of surfaces without boundary, the next result is Theorem 2.5
in [10].

Theorem 3.10. Let S be a surface with smooth boundary (possibly empty),
endowed with a Riemannian metric. Let ϕ, V be smooth functions on S and
suppose that ϕ vanishes along the boundary of S and solves the Schrödinger
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equation (∆ + V )ϕ = 0. Then the nodal set Zϕ = {x ∈ S | ϕ(x) = 0} of ϕ
is a locally finite graph in S. Moreover,
1) z ∈ Zϕ ∩ S̊ has valence 2n if and only if ϕ vanishes of order n at z.
2) z ∈ Zϕ ∩ ∂S has valence n+ 1 if and only if ϕ vanishes of order n at z.
In both cases, the opening angles between the edges at z are equal to π/n.

Proof. Recall that non-zero eigenfunctions of the Laplacian cannot vanish
of infinite order at any point; see e.g. [1]. Hence by the main result of [2], at

any critical point z ∈ Zϕ∩ S̊ of ϕ, there are Riemannian normal coordinates
(x, y) about z, a spherical harmonic p = p(x, y) 6= 0 of some order n ≥ 2,
and a constant α ∈ (0, 1) such that

ϕ(x, y) = p(x, y) +O(rn+α),

where we write (x, y) = (r cos θ, r sin θ). By Lemma 2.4 of [10], there is a
local C1-diffeomorphism Φ about 0 ∈ R2 fixing 0 such that ϕ = p ◦Φ. Note
that, up to a rotation of the (x, y)-plane, we have

p = p(x, y) = crn cosnθ

for some constant c 6= 0. It follows that the interior nodal set Zϕ ∩ S̊ of
ϕ is a locally finite graph with critical points of ϕ as vertices and that the
valence of points on Zϕ is as asserted.

It remains to discuss points z ∈ Zϕ ∩ ∂S. Since dimS = 2, there are
isothermal coordinates around z, that is, coordinates (x, y) about z in which
the Riemannian metric g of S is conformal to the Euclidean metric g0:
g = fg0 with f = f(x, y) > 0. Then, again since dimS = 2, the associated
Laplacians satisfy f∆ = ∆0, and hence ϕ solves the Schrödinger equation
(∆0 + fV )ϕ = 0 in the domain of the coordinates.

After an appropriate further conformal change of the coordinates, we can
assume that the domain of the coordinates is Bε(0) ∩ {y ≥ 0} such that ∂S
corresponds to Bε(0) ∩ {y = 0}. We consider ϕ and W = fV as functions
on B+ = Bε(0) ∩ {y ≥ 0}, where ϕ(x, 0) = 0, and extend them to functions
on Bε(0) by setting ϕ(x, y) = −ϕ(x,−y) and W (x,−y) =W (x, y). Then ϕ
andW are C1,1 and C0,1 on Bε(0), respectively, and ϕ solves (∆0+W )ϕ = 0
in B+. Since the reflection about the x-axis is an isometry of the Euclidean
plane, we also have (∆0ϕ)(x, y) = −(∆0ϕ)(x,−y). Hence

(∆0 +W )ϕ(x, y) = −(∆0ϕ)(x,−y) −W (x, y)ϕ(x,−y) = 0

in B− = Bε(0) ∩ {y ≤ 0}. Since ϕ = 0 along the x-axis, all x-derivatives
of ϕ vanish along the x-axis. Since ϕ solves (∆0 +W )ϕ = 0, the second
derivative of ϕ in the y-direction vanishes along the x-axis as well, and hence
ϕ is C2,1. We conclude that ϕ is a strong solution of (∆0 +W )ϕ = 0 on
Bε(0), and hence the main result of [2] and (the proof of) Lemma 2.4 of

[10] applies. The remaining assertions follow as in the case of z ∈ Zϕ ∩ S̊
above. �

We learned from the proof of Theorem 2.3 in [12] that the reflection about
the x-axis in the Euclidean plane, which we use in the second part of the
above proof, might be helpful in the discussion of the boundary regularity
of solutions of Schrödinger equations.
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Corollary 3.11. In the situation of Theorem 3.10, Zϕ is a locally finite
union of immersed circles, line segments with both end points on ∂S, rays
with one end point on ∂S, and lines. �

4. Proof of Theorem 1.5

Throughout this section, let ϕ be a non-vanishing square integrable smooth
function on S which is a finite linear combination of eigenfunctions with
eigenvalues ≤ Λ(S). The set of zeros of ϕ,

(4.1) Zϕ := {x ∈ S | ϕ(x) = 0},

is called the nodal set of ϕ. The connected components of the complement
S \ Zϕ are called nodal domains of ϕ.

Lemma 4.2. With respect to the area element of S, we have ∇ϕ(x) = 0 for
almost any x ∈ Zϕ.

Proof. With respect to the area element of S, the set of points of density of
Zϕ has full measure in Zϕ. Clearly, ∇ϕ(x) = 0 in any such point x. �

We say that ε > 0 is ϕ-regular, if ε and −ε are regular values of ϕ. For
any ε > 0, we call

(4.3) Zϕ(ε) := {x ∈ S | |ϕ(x)| ≤ ε}

the ε-nodal set of ϕ. We are only interested in the case where ε is ϕ-regular.
Then Zϕ(ε) is a subsurface of S with smooth boundary, may consist of more
than one component, and the boundary components of Zϕ(ε) are embedded
smooth circles and lines along which ϕ is constant ±ε.

Lemma 4.4. For any ϕ-regular ε > 0, consider the function ϕε

ϕε(x) =











ϕ(x) − ε if ϕ(x) ≥ ε,

ϕ(x) + ε if ϕ(x) ≤ −ε,

0 otherwise.

Then ϕε ∈ H1(M) and limε→0 ϕε = ϕ in H1(M).

Proof. For all x ∈ S, we have |ϕε(x)| ≤ |ϕ(x)|. Hence ϕε is in L2(M).
Moreover, ϕε(x) → ϕ(x), hence limε→0ϕε = ϕ in L2(M). Furthermore, ϕε
has weak gradient

(4.5) ∇ϕε(x) =

{

∇ϕ(x) if |ϕ(x)| ≥ ε,

0 otherwise.

It follows that ϕε is inH
1(M). By Lemma 4.2, limε→0ϕε = ϕ inH1(M). �

In what follows, we assume throughout that ε is ϕ-regular. We say that
a disc D in S is an ε-disc if D is closed in S and

(4.6) ϕ = +ε and ν(ϕ) > 0 or ϕ = −ε and ν(ϕ) < 0

along the boundary circle ∂D of D, where ν denotes the outer normal of
D along ∂D. Note that, for an ε-disc D, a neighborhood of ∂D inside D
is contained in Zϕ(ε), whereas a neighborhood of ∂D outside D belongs to
{ϕ ≥ ε} in the first case in (4.6) and {ϕ ≤ −ε} in the second.
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The boundary circles of ε-discs are components of {ϕ = ±ε}. Since ε is ϕ-
regular, the normal derivative of ϕ has to be nonzero along {ϕ = ±ε}. The
requirements on the normal derivative in (4.6) fix its sign. As an example
where these requirements do not hold, we note that components of {ϕ ≥ ε}
or {ϕ ≤ −ε} might be discs, but never ε-discs. On the other hand, any
component of Zϕ(ε), which is a disc, is also an ε-disc.

By the Schoenflies theorem, any component C of Zϕ(ε), which is contained
in the interior of a closed disc, is also contained in an ε-disc. More precisely,
there is an ε-disc D such that ∂D ⊆ ∂C and such that C is a neighborhood
of ∂D inside D. We let Yϕ(ε) be the union of S \Zϕ(ε) with all ε-discs. Note
that the union might not be disjoined since ε-discs might contain components
of {ϕ ≥ ε} and {ϕ ≤ −ε}.

Lemma 4.7. 1) Yϕ(ε) is the union of S\Z̊ϕ(ε) with all components of Zϕ(ε)
which are contained in the interior of closed discs in S.
2) The components of Yϕ(ε) are incompressible in S.

Proof. 1) follows immediately from what we said above. As for 2), suppose
that there is a loop in a component C of Yϕ(ε) which is not contractible
in C, but is contractible in S. Then there is an embedded circle c in the
interior of C with that property. By Proposition 2.3, there is a closed disc
D in S with ∂D = c. Since c is not contractible in C, the interior of D
contains a component of S \ Yϕ(ε) ⊆ Zϕ(ε). This contradicts 1). �

The set of ε-discs is ordered by inclusion. It is important that we have
maximal elements in this ordered set.

Lemma 4.8. If two ε-discs intersect, then they are either identical or one is
contained in the interior of the other. Moreover, any ε-disc is contained in a
unique maximal ε-disc and maximal ε-discs are either identical or disjoint.

Proof. The first statement is clear since ε is ϕ-regular.
Fix an exhaustion of S by compact subsurfaces Sn such that S\Sn consists

of cylindrical neighborhoods of the ends of S and such that ∂Sn intersects
the set {ϕ = ±ε} transversally. Then the boundary components of any Sn
are labeled by the ends of S they belong to, any Sn meets only finitely many
components of the set {ϕ = ±ε}, and the sets {ϕ = ±ε} ∩ ∂Sn are finite.

Let D1 ⊆ D2 ⊆ . . . be an ascending chain of pairwise distinct ε-discs. For
n sufficiently large, we have D1 ⊆ Sn. Then Dl ∩ Sn 6= ∅ and ∂Dl ∩ ∂Sn ⊆
{ϕ = ±ε} ∩ ∂Sn for all l ≥ 1. Moreover, if ∂Dl ∩ ∂Sn = ∅, then Dl ⊆ Sn.
Since ε is ϕ-regular, it follows that the chain of discs is finite.

Let D and D′ be maximal ε-discs and suppose that D ∩ D′ 6= ∅. Note
that D and D′ each have only one boundary circle, c and c′. If c = c′, then
D = D′ by maximality. If c is contained in the interior of D′, then c′ is
contained in the interior of D, since otherwise D would be contained in the
interior of D′, contradicting maximality. But then D ∪ D′ is a subsurface
of S without boundary which is closed as a subset, and hence D ∪D′ = S.
This is impossible since then S = D ∪D′ would be a sphere. �

Lemma 4.9. Each component C of Yϕ(ε) is the union of a component C0

of {ϕ ≥ +ε} or of {ϕ ≤ −ε} together with maximal ε-discs attached to them
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along common boundary circles. In particular, ∂C ⊆ ∂C0 and

ϕ|∂C = +ε and ν(ϕ) < 0 if C0 is contained in {ϕ ≥ +ε},

ϕ|∂C = −ε and ν(ϕ) > 0 if C0 is contained in {ϕ ≤ −ε},

where ν denotes the outer normal field of C.

Proof. By Lemma 4.8, Yϕ(ε) is the union of S \ Zϕ(ε) with all maximal ε-
discs. By the requirement on the normal derivative in (4.6), the boundary
circle c of each maximal ε-disc D is attached to a component of {ϕ ≥ ε} if
ϕ|c = ε and a component of {ϕ ≤ −ε} if ϕ|c = −ε, respectively. �

By Lemma 4.9, we may write Yϕ(ε) as the disjoint union,

(4.10) Yϕ(ε) = Y +
ϕ (ε)∪̇Y −

ϕ (ε),

where Y +
ϕ (ε) and Y −

ϕ (ε) consist of the components C of Yϕ(ε) such that the
corresponding C0 is contained in {ϕ ≥ +ε} and {ϕ ≤ −ε}, respectively.

For the statement of the following lemma, recall Proposition 2.2.

Lemma 4.11. For any sufficiently small ϕ-regular ε > 0, the fundamental
group of at least one component of Yϕ(ε) contains the free group F2 in two
generators. Moreover, if ϕ is an eigenfunction, then each nodal domain C
of ϕ is incompressible and the fundamental group of C contains F2.

Proof. We may assume that Yϕ(ε) 6= S. We suppose first that the Rayleigh
quotient R(ϕ) < Λ(S) and choose δ > 0 such that

(4.12) R(ϕ) ≤ Λ(S)− 2δ.

By Lemma 4.4 and since S \ Yϕ(ε) ⊆ Zϕ(ε), we have, for any sufficiently
small ϕ-regular ε > 0,

(4.13)

∑

C

∫

C
|∇ϕε|

2

∑

C

∫

C
ϕ2
ε

≤

∫

S
|∇ϕ|2dv

∫

S
ϕ2dv

+ δ = R(ϕ) + δ ≤ Λ(S)− δ,

where the sums run over the components C of Yϕ(ε). We conclude that
there is a component C of Yϕ(ε) such that

(4.14) R(ϕε|C) =

∫

C
|∇ϕε|

2

∫

C
ϕ2
ε

≤ Λ(S)− δ.

Now ϕ is smooth on S, hence ϕε|C is smooth on C and vanishes along ∂C.
Therefore ϕε|C ∈ H1

0 (C), by Lemma 3.2. Now it follows from the definition
of Λ(S) that the interior of C can not be diffeomorphic to an open disc,
an open annulus, or an open cross cap. Thus the fundamental group of C
contains F2.

Assume now that R(ϕ) = Λ(S). Recall that ϕ is a finite linear combina-
tion of eigenfunctions of S, ϕ =

∑

ciϕi, where ϕi ∈ E is a λi-eigenfunction
with λi ≤ Λ(S). If there would be an i with ci 6= 0 and λi < Λ(S), then we
would have R(ϕ) < Λ(S), a contradiction. It follows that all λi with ci 6= 0
are equal to Λ(S), and hence that ϕ is a Λ(S)-eigenfunction.

Suppose now, more generally, that ϕ is an eigenfunction with correspond-
ing eigenvalue λ ≤ Λ(S). Then ϕ is smooth on S. By Theorem 3.10, the
nodal domains of ϕ have piecewise smooth boundary. Hence Lemma 3.2
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implies that, for any nodal domain C of ϕ, we have ϕ|C ∈ H1
0 (C) with

R(ϕ|C) = λ. In particular, λ0(C) ≤ λ.
Let C ′ be a thickening of C, that is, C ′ is a domain in S with piecewise

smooth boundary which contains C in its interior and such that C is a
deformation retract of C ′. If the fundamental group of C does not contain
F2, then neither does the fundamental group of C ′, and then

Λ(S) ≤ λ0(C
′) ≤ λ0(C).

The extension ϕ′ of ϕ|∂C to C ′, setting ϕ′|C′\C = 0, is in H1
0 (M) and in

the domain of the Laplacian of C ′. Moreover, it has Rayleigh quotient
R(ϕ′) = λ. Hence Lemma 3.5 applies and shows that λ0(C

′) = Λ(S) and
∆ϕ′ = Λ(S)ϕ′. Now ϕ′ does not vanish identically on C, but vanishes on
C ′ \ C. This is in contradiction to the unique continuation property for
Laplace operators. Hence the fundamental group of any nodal domain of ϕ
contains F2.

Let C be a nodal domain of ϕ and suppose that C is not incompressible
in S. Then there is a loop c in C which is not homotopic to zero in C, but
is homotopic to zero in S. Without loss of generality, we may assume that
c is a Jordan curve in C̊. Then c bounds a disc in S, which is not contained
in C, by Proposition 2.3. By the Schoenflies theorem, there would be a
nodal domain D of ϕ whose closure is a closed disc with piecewise smooth
boundary and with λ0(D) = Λ(S). This is impossible, since Λ(S) is not
attained on (embedded) closed discs. Hence all nodal domains of ϕ are
incompressible in S.

Let C be a nodal domain and c1, c2 : [0, 1] → C be two loops at a point
x ∈ C which generate a free subgroup F2 ∈ π1(C, x). By Theorem 3.10, we

may assume that the images of c1 and c2 are contained in C̊. Without loss
of generality, we may also assume that ϕ is positive on C̊. Then

C̊ = ∪ε>0{y ∈ C | ϕ(y) > ε}.

Therefore the image of c0 and c1 is contained in {y ∈ C | ϕ(y) > ε} for
all sufficiently small ε > 0. Hence the fundamental group of the component
C0 ⊆ C of Yϕ(ε) which contains c0 and c1 also contains F2. From Lemma 4.9
we conclude that the component of Yϕ(ε) containing C0 contains F2. �

Say that a component C of Yϕ(ε) is an F2-component if the fundamental
group of C contains F2. By Lemma 4.9, a component C of Y +

ϕ (ε) is an F2-
component if and only if there is a point x in the interior of the corresponding
component C0 of {ϕ ≥ ε} and a pair of loops c0 and c1 at x which generate
an F2 in π1(C, x) such that c0 and c1 are contained in the interior of C0;
that is, such that ϕ > ε along them. The characterization of F2-components
of Y −

ϕ (ε) is analogous.

Lemma 4.15. If K is a compact subsurface of S such that S \ K is a
cylindrical neighborhood of the ends of S and C is a component of Yϕ(ε)
which is contained in S \ K, then the interior of C is diffeomorphic to an
open disc or an open annulus. In particular,
1) any F2-component of Yϕ(ε) intersects K;
2) Yϕ(ε) contains only finitely many F2-components.
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Components of Yϕ(ε) might be non-compact and might have infinitely
many boundary components. But since they are incompressible in S, their
interiors are surfaces of finite type.

Proof of Lemma 4.15. The components of S \K are diffeomorphic to open
annuli, hence their fundamental group is infinite cyclic. Moreover, C is
incompressible in S, hence also in the component of S \ K containing it.
Therefore the fundamental group of C is either trivial or infinite cyclic.
Now, as a domain in a cylinder, C is orientable. Hence the interior of C is
diffeomorphic to an open disc or an open annulus. �

We denote by Xϕ(ε) the union of the F2-components of Yϕ(ε) and by
X±
ϕ (ε) the ones among them which belong to Y ±

ϕ (ε). Then Xϕ(ε) is the

disjoint union of X+
ϕ (ε) and X

−
ϕ (ε).

Lemma 4.16. If ε′ ≤ ε are ϕ-regular, then X±
ϕ (ε) ⊆ X±

ϕ (ε
′).

Proof. By definition, Zϕ(ε
′) ⊆ Zϕ(ε). If a component of Zϕ(ε) is contained

in the interior of an embedded closed disc, then also all the components of
Zϕ(ε

′) it contains. It follows that Yϕ(ε) ⊆ Yϕ(ε
′). By Lemma 4.7.2, if C is an

F2-component of X±
ϕ (ε), then also the component C ′ of X±

ϕ (ε
′) containing

it. Hence Xϕ(ε) ⊆ Xϕ(ε
′).

Now let C be a component of X+
ϕ (ε) and suppose that the component C ′

ofXϕ(ε
′) containing C belongs toX−

ϕ (ε
′). By Lemma 4.9, C is the union of a

component C0 of {ϕ ≥ ε} with maximal ε-discs. Now let x be a point in the
interior of C0 and choose loops c0 and c1 in the interior of C0 generating an
F2 in π1(C, x); compare with our discussion further up. In particular, ϕ > ε
along c0 and c1. Under the inclusion C → C ′, c0 and c1 cannot be contained
in the maximal ε′-discs belonging to C ′ because they would be homotopic to
zero in S otherwise. But then they must meet {ϕ ≤ −ε′}, a contradiction.
We conclude that X+

ϕ (ε) ⊆ X+
ϕ (ε

′); similarly X−
ϕ (ε) ⊆ X−

ϕ (ε
′). �

We view the funnels of S as vertical and pointing upwards. In this picture,
a Jordan curve c in a funnel F , which is a generator of the fundamental group
of F , cuts S \ c in two open pieces, the set Fc of points above c and the set
of remaining points, sometimes called the points below c. The set of points
above c is contained in F and is a funnel around the same end as F , the set
of points below c is not contained in F .

We call Jordan curves in F , which generate the fundamental group of F ,
cross sections of F . We say that a cross section c of F is (ϕ, ε)-regular if it
meets the curves {ϕ = ±ε} transversally. By transversality theory, any cross
section of F can be approximated by smooth (ϕ, ε)-regular cross sections of
F in any reasonable topology.

Our aim is now to describe the structure of X±
ϕ (ε) with respect to F .

Let c be a (ϕ, ε)-regular cross section of F . Then c intersects {ϕ = ε}
transversally. We emphasize the following three cases:
1) Fc ⊆ X±

ϕ (ε).

2) c ∩X±
ϕ (ε) = ∅,

3) c ∩ ∂X±
ϕ (ε) 6= ∅.

We now want to normalize the position of a (ϕ, ε)-regular cross section c of
F in such a way that the part of X±

ϕ (ε) below c is homotopy equivalent to
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X±
ϕ (ε). If it is possible to choose c such that 1) or 2) hold, then any such

choice will be a normalization. In the remaining case, c ∩ ∂X±
ϕ (ε) 6= ∅ for

any choice of cross section of F . Since ε is ϕ-regular, c∩ {ϕ = ±ε} is finite.
By Lemma 4.9, c ∩ ∂X±

ϕ (ε) ⊆ c ∩ {ϕ = ±ε}.
Since {ϕ = ±ε} is a properly embedded submanifold (of dimension 1) of

S, the components of Fc ∩ {ϕ = ±ε} above c are of the following two types:
Either they are Jordan segments with endpoints on c or they are Jordan rays
with one end on c and escaping to infinity along the other. We call these
components recurrent and escaping, respectively. Since {ϕ = ±ε} is properly
embedded, escaping components in Fc ∩ {ϕ = ±ε} extend continuously as
Jordan curves to the one point compactifictaion of Fc at infinity.

If a is a recurrent component, then there is a segment b in c such that a∪b
is a null homotopic Jordan loop in F . The disc bounded by a∪b will be called
the part of Fc below a. Since c ∩ {ϕ = ±ε} is finite, there are only finitely
many such discs, and they are ordered by inclusion. The components a above
maximal such discs will be called uppermost. We replace the segments b of
c below such maximal discs by the corresponding uppermost components a
and obtain a piecewise smooth cross section of F . Pushing this cross section
upwards and smoothing it appropriately, we arrive at the normalized third
case: c is (ϕ, ε)-regular and the interior of Fc ∩ X

±
ϕ (ε) is a finite union of

open discs, bounded by segments of c, escaping components of Fc∩∂X
+
ϕ (ε),

and, possibly, boundary lines of X±
ϕ (ε) which start and end at infinity in F .

Note that boundary circles of X±
ϕ (ε) cannot occur, since they would not be

null homotopic and we would be in the second case above.
In all three cases, after normalization, the part of X±

ϕ (ε) below c is ho-

motopy equivalent to X±
ϕ (ε). With a bit of more work, it would be possible

to show that the part of X±
ϕ (ε) below c is a deformation retract of X±

ϕ (ε).

The technical problem consists in handling the components of Fc ∩ ∂X
+
ϕ (ε)

above c which contain boundary lines which come from and return back to
infinity in Fc. These boundary lines cut out infinite peninsulas which are
hanging down from infinity in our picture of Fc. Since we do not need more
than homotopy equivalence, we leave it with these remarks.

Consider a pair (ε,K), where ε > 0 and K is a smooth and compact
subdomain of S such that S \K consists of funnels. Say that the pair (ε,K)
is ϕ-regular if ε is ϕ-regular and ∂K consists of normalized (ϕ, ε)-regular
cross sections as above. For any such pair (ε,K), define

(4.17) Xϕ(ε,K) = Xϕ(ε) ∩K and X±
ϕ (ε,K) = X±

ϕ (ε) ∩K.

Note that Xϕ(ε,K) is the disjoint union X+
ϕ (ε,K)∪̇X−

ϕ (ε,K).

By what we said above, the inclusions X±
ϕ (ε,K) → X±

ϕ (ε) are homotopy
equivalences. Since K is a deformation retraction of S, Lemma 2.5 implies

(4.18) χ(S) = χ(K) ≤ χ(Xϕ(ε,K)) = χ(X+
ϕ (ε,K)) + χ(X−

ϕ (ε,K)) < 0.

By Lemma 4.7.2, the components of Xϕ(ε,K) are incompressible in S. The
following result is an immediate consequence of Lemma 2.5 and Lemma 4.16.
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Lemma 4.19. If (ε,K) and (ε′,K ′) are ϕ-regular with ε′ ≤ ε and K ⊆ K ′,
then

X±
ϕ (ε,K) ⊆ X±

ϕ (ε
′,K ′) and χ(X±

ϕ (ε
′,K ′)) ≤ χ(X±

ϕ (ε,K)).

Moreover, if χ(Xϕ(ε,K)) = χ(Xϕ(ε
′,K ′)), then X±

ϕ (ε
′,K ′) arises from

X±
ϕ (ε,K) by attaching annuli, cross caps, and lunes along boundary curves

of X±
ϕ (ε,K). �

As a direct application of (4.18) and Lemma 4.19, we get the

Corollary 4.20. There exists a ϕ-regular pair (εϕ,Kϕ) such that

χ(X±
ϕ (ε,K)) = χ(X±

ϕ (εϕ,Kϕ))

for all ϕ-regular pairs (ε,K) with ε ≤ εϕ and Kϕ ⊆ K. �

Now we assume throughout that we are in the stable range, that is, we con-
sider ϕ-regular pairs (ε,K) with ε ≤ εϕ and Kϕ ⊆ K. For such a pair (ε,K),
we study the isotopy type of the triples (S,X+

ϕ (ε,K),X−
ϕ (ε,K)). Here

and below we mean compactly supported topological isotopy when speak-
ing of isotopy. By the definition of ϕ-regularity and the discussion lead-
ing to it, the isotopy type of (S,X+

ϕ (ε,K),X−
ϕ (ε,K)) does not depend

on K. Hence to compare it with the isotopy type of another such triple
(S,X+

ϕ (ε
′,K ′),X−

ϕ (ε
′,K ′)), we may assume that ε′ < ε and that K is con-

tained in the interior of K ′.
NowX±

ϕ (ε,K) has two kinds of boundary circles: The first kind consists of
boundary circles in the interior of K, the second kind consists of segments of
boundary circles of ∂K concatenated with segments of ∂X±

ϕ (ε) ⊆ {ϕ = ±ε}
that run inside K from ∂K to ∂K. By the definition of ϕ-regularity, bound-
ary circles of K do not occur as boundary circles of X±

ϕ (ε,K). The first

kind of boundary circles of X±
ϕ (ε,K) is smooth, the second kind is piecewise

smooth with vertices in the points, where the circle enters or respectively
leaves ∂K. The boundary of X±

ϕ (ε
′,K ′) consists of the corresponding two

kinds of boundary circles.
We start with a closer look at the gluings required to obtain X±

ϕ (ε
′,K ′)

from X±
ϕ (ε,K). Since their Euler characteristics coincide, only annuli, cross

caps, and lunes are concerned; compare with Lemma 2.5. Now ε′ < ε and
K is contained in the interior of K ′. Hence the boundaries of X±

ϕ (ε,K) and

X±
ϕ (ε

′,K ′) are disjoint, and therefore no lunes occur.

Suppose that a boundary circle c of X±
ϕ (ε,K) bounds a cross cap C in

the complement (of the interior) of X±
ϕ (ε,K) in S. Now C decomposes

S into two connected regions, the points inside C and the points outside
C. Since ∂C is contained in ∂X±

ϕ (ε,K), we conclude that a curve from

a point inside C to a point outside of C ∪ X±
ϕ (ε,K) has to pass through

X±
ϕ (ε,K). In particular, C cannot contain points on or beyond boundary

circles of K since otherwise it would also contain the corresponding funnels,
a contradiction to the compactness of C. We conclude that in the gluing
required to obtain X±

ϕ (ε
′,K ′) from X±

ϕ (ε,K), the cross caps, including their
boundary circles, are contained in the interior of K. In particular, ϕ = ±ε
along their boundary circles.
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Since annuli have two boundary circles, the discussion of them involves
case distinctions. Suppose first that two boundary circles c0 and c1 of
X±
ϕ (ε,K) bound a closed annulus A in the complement (of the interior)

of X±
ϕ (ε,K) in S. Then any curve from a point inside A to a point outside

of A∪X±
ϕ (ε,K) has to pass through X±

ϕ (ε,K). As in the case of cross caps,
we get that A cannot contain points on or beyond boundary circles of K
since otherwise it would also contain the corresponding funnels, a contra-
diction to the compactness of A. We conclude that in the gluing required to
obtain X±

ϕ (ε
′,K ′) from X±

ϕ (ε,K), the annuli A with ∂A ⊆ ∂X±
ϕ (ε,K) are

contained in the interior of K. In particular, ϕ = ±ε along their boundary
circles.

Finally, an annulus might be glued to X±
ϕ (ε,K) along one boundary circle

such that the second boundary circle belongs to the boundary of X±
ϕ (ε

′,K ′).

Such gluings do not change the isotopy type of X±
ϕ (ε

′,K ′) in S, but gluings
of cross caps and annuli as above do. To remedy this, attach all annuli and
cross caps to X±

ϕ (ε,K) which are contained in the interior of K and have

their boundary in X+
ϕ (ε,K) and call the resulting subsurface S±

ϕ (ε,K).
Note that no component of Xϕ(ε,K) is contained in any of the attached

cross caps and annuli since the components of Xϕ(ε,K) are incompressible
in S and their fundamental groups contain an F2. Hence

S+
ϕ (ε,K) ∩ S−

ϕ (ε,K) = ∅.

Note also that attaching annuli and cross caps does not change the Euler
characteristic.

Lemma 4.21. If (ε,K), (ε′,K ′) are ϕ-regular with ε′ ≤ ε ≤ εϕ and Kϕ ⊆
K ⊆ K ′, then

(S, S+
ϕ (ε,K), S−

ϕ (ε,K)) and (S, S+
ϕ (ε

′,K ′), S−
ϕ (ε

′,K ′))

are isotopic in S.

Proof. After the above discussion leading to the definition of S±
ϕ (ε,K), we

have the following remaining issues:
If a boundary circle c of X±

ϕ (ε,K) bounds a cross cap C in S, then either

already C ⊆ X±
ϕ (ε

′,K ′) or else an annulus A ⊆ C is attached to c along

one of its boundary circles and the other boundary circle c′ belongs to the
boundary of X±

ϕ (ε
′,K ′). Then c′ bound a cross cap C ′ in the complement

(of the interior) of A in C and C = A ∪C ′.
Conversely, if a boundary circle c of X±

ϕ (ε
′,K ′) bounds a cross cap C ′ in

S, then c is contained in the interior of K ′ and thus ϕ = ±ε′ along c. We
conclude that c is a boundary circle of an annulus A attached to X±

ϕ (ε,K)
along the other boundary circle of A. Thus C = A ∪ C ′ is a cross cap in
S with ∂C a boundary circle of X±

ϕ (ε,K). By the discussion further up we
obtain that C is in the interior of K.

If boundary circles c0 and c1 of X±
ϕ (ε,K) bound an annulus A in S,

then either already A ⊆ X±
ϕ (ε

′,K ′) or else disjoint annuli A0, A1 ⊆ A are
attached to c0 and c1, each along one of its boundary circles, and the other
boundary circles c′0 and c′1 bound an annulus A′ ⊆ A between A0 and A1.
Then A = A0 ∪A

′ ∪A1.
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Conversely, if boundary circles c0 and c1 of X±
ϕ (ε

′,K ′) bound an annulus
A′ in S, then A′ is contained in the interior of K ′ and thus ϕ = ±ε′ along
∂A′. Arguing as in the case of cross caps, we get annuli A0 and A1 with one
boundary circle in X±

ϕ (ε,K) and the other equal to c0 and c1, respectively.

Thus A = A0 ∪ A
′ ∪ A1 is an annulus in S such that ∂A lies in X±

ϕ (ε,K).
By the discussion further up we obtain that A is in the interior of K. �

We call the isotopy type of the triple (S, S+
ϕ (ε,K), S−

ϕ (ε,K)) the type of
ϕ and the Euler characteristic of Sϕ(ε,K) the characteristic of ϕ.

Lemma 4.22. If ψ is a non-trivial finite linear combination of eigenfunc-
tions of S with corresponding eigenvalues ≤ Λ(S), with the same character-
istic as ϕ, and suffciently close to ϕ, then the types of ϕ and ψ coincide.

Proof. Let L be a compact neighborhood of K which contains all the ε-
discs with respect to ϕ which intersect K. Consider a function ψ with the
same characteristic as ϕ which is C2-close to ϕ on L. Then ±ε are regular
values of ψ|L, the curves ψ|L = ±ε intersect ∂K transversally, and there is
a small isotopy of S which leaves K and ∂K invariant which deforms the
configuration of curves {ψ = ε} ∩ L and {ψ = −ε} ∩ L to the configuration
of curves {ϕ = ε} ∩ L respectively {ϕ = −ε} ∩ L and, therefore, also the
subsurfaces {ψ ≥ ε}∩K and {ψ ≤ −ε}∩K to the subsurfaces {ϕ ≥ ε}∩K
respectively {ϕ ≤ −ε} ∩K.

Clearly, if a boundary segment of the latter intersects an ε-disc D of ϕ,
then D is contained in L and corresponds under the isotopy to an ε-disc B
of ψ. Attaching the parts B∩K of such discs, we get a surface T± such that
the above isotopy deforms T± to X±

ϕ (ε,K). In particular, the fundamental

group of T± contains an F2, T
± is incompressible in S and

χ(T±) = χ(X±
ϕ (ε,K)).

By changing ε slightly, we can achieve that ε is also ψ-regular. Then, by
what we said, T± is a component of X±

ψ (ε,K). Moreover, choosing a ψ-

regular (ε,K ′) with K in the interior of K ′, we have T± ⊆ X±
ψ (ε,K

′).

Hence X±
ψ (ε,K

′) is obtained from T± by attaching annuli, cross caps, and

lunes. Now annuli where both boundary curves are attached to T± and
cross caps attached to T± are contained in the interior of K and belong to
S±
ψ (ε,K). We (finally) conclude that (S, S+

ψ (ε,K
′), S−

ψ (ε,K
′)) is isotopic to

the triple (S, S+
ϕ (ε,K), S−

ϕ (ε,K)). �

End of proof of Theorem 1.5. Let E be a subspace of L2(M) which is gener-
ated by finitely many eigenfunctions with corresponding eigenvalues ≤ Λ(S)
and denote by S the unit sphere in E and by P the projective space of E.
Theorem 1.5 follows if any such E has dimension at most −χ(S).

Since χ(S±
ϕ (ε,K)) = χ(X±

ϕ (ε,K)), (4.18) and Lemma 4.21 imply that we
obtain a partition of S into the subsets Ai consisting of functions ϕ with
characteristic i ∈ {−χ(S), . . . ,−1}. By definition, ϕ ∈ Ai if and only if
−ϕ ∈ Ai. Hence the partition of S into the sets Ai is the preimage of a
partition of P into subsets Bi under the covering projection π : B → P.

Now at least one of the subsurfaces S+
ϕ (ε,K) or S−

ϕ (ε,K) is nonempty
and contains two loops c0 and c1 with intersection number one. Then the
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image of c1 under an isotopy of S will still intersect c0, and therefore there
is no isotopy of S which interchanges the disjoint subsurfaces S+

ϕ (ε,K) and

S−
ϕ (ε,K). Hence the type of ϕ ∈ S is different from the type of −ϕ. Hence

by Lemma 4.22, the covering π is trivial over the subsets Ai. Now P cannot
be covered by less than dimE subsets over which π is trivial, by Lemma 8
in [18]. We conclude that dimE ≤ −χ(S). �
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ator Theory: Adv. Appl., 4, Birkhäuser, Basel-Boston, Mass., 1982. MR065029, Zbl
0497.52007.

[14] S.Mondal, Systole and λ2g−2 of closed hyperbolic surfaces of genus g. Enseign. Math.
60 (2014) no. 2, 1–23, MR3262432, Zbl 1303.30037.

[15] J.-P.Otal, E.Rosas, Pour toute surface hyperbolique de genre g, λ2g−2 > 1/4. Duke
Math. J. 150 (2009), no. 1, 101–115, MR2560109, Zbl 1179.30041.

[16] P. Sarnak, Spectra of hyperbolic surfaces. Bull. Amer. Math. Soc. (N.S.) 40 (2003),
no. 4, 441–478, MR1997348, Zbl 1045.11033.

[17] R. Schoen, S.Wolpert, S.-T. Yau, Geometric bounds on the low eigenvalues of a com-
pact surface. Geometry of the Laplace operator Proc. Sympos. Pure Math., XXXVI,
Amer. Math. Soc., Providence, R.I., 1980, MR573440, Zbl 0446.58018.
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